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HOW MATHEMATICS CREATES MEANING
IN ARCHITECTURE

Nikos A. Salingaros
University of Texas at San Antonio

Abstract: Mathematics is about relationships, repeatabil-
ity, and nested structures. Regular ordering affects us 
viscerally because human perception relies upon infor-
mation reduction through symmetries. Random (disorga-
nized) information becomes too much for us to process, 
which generates anxiety. Architectural elements are vis-
ible shapes, and they need to be combined, compared, 
counted, grouped, and juxtaposed. This is what our brains 
do automatically. We subconsciously analyze and pro-
cess the information presented in any composition using 
mathematical relations. We perceive our world by group-
ing adjoining geometrical elements, via symmetries, into 
larger wholes. We make our way in the world thanks to 
a mathematical process for making sense of our environ-
ment. Basic symmetries have a profound effect on compo-
sition and design. Some elements have the same size and 
shape (oriented in the same way, or reflected, or rotated), 
and are aligned horizontally or vertically. Their repetitions 
are regularly spaced; otherwise there is no symmetry. Scal-
ing symmetry is something entirely distinct, and links 
components visually when we see magnified or reduced 
versions of the same thing. This self-similarity at different 
magnifications is a basic feature of a ‘fractal’. Scaling sym-
metry is a dominant feature in traditional and vernacular 
architectures, and is one reason those quite different form 
languages have meaning for us. Mathematics also relates 
components of a whole via their relative number and size. 
The universal distribution law says: “In a complex system, 
there are few large objects, more intermediate-size objects, 
and many smaller objects, roughly in an inverse-power re-
lationship”. The number of elements of different sizes we 
perceive at the same time should be inversely proportional 
to their size. These requirements influence architectural 
composition to have an “ordered” appearance that echoes 
traditional and vernacular styles.

Keywords: Architecture; Mathematics; Meaning; Order; 
Symmetries.
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1. Introduction

Mathematics has historically been tied to architecture as one of its most im-
portant tools. In many eras that produced great architecture, an architect com-
bined the professions of architect/mathematician. Architects and structural en-
gineers need mathematical knowledge to make a building stand up. Another 
side of mathematics relates aesthetic expression to overall form and tectonics. 
For example, proportional ratios were used to determine relative dimensions of 
architectural components. Yet in contrast to the down-to-earth applications of 
mathematics to the engineering of buildings, the aesthetic part is full of mystery 
and romanticism — unlike what mathematics is actually about. 

These questions surpass architecture per se and immediately broaden to 
mathematical definitions of beauty. Can we define formulas for beauty? It is very 
difficult to do so, although this has not stopped many authors from trying. The 
results are mixed: at best confusing and of doubtful practical value. Yet there are 
positive examples, and how do we explain those? What appears to be the case 
is that the neurological intuition of the designer underlies whatever mathemati-
cal method is being used. One case is the much-discussed “Golden Ratio” or 
“Golden Mean”, which I’m sorry to say does not endow any magical or special 
meaning to rectangles (Salingaros, 2018).

The key to understanding the role of mathematics in design is to discover 
how mathematical patterns in nature became embedded into our neurological 
systems. “Beauty” then represents those hard-wired patterns we respond to for 
reasons that guaranteed survival during our evolution. By investigating those 
original natural patterns, we come up with a set of basic mathematical tools 
(Salingaros, 2010; 2019). Notions of entropy, fractals, information compression, 
simple transformations in a plane, and vector spaces arise as the most relevant 
tools for assessing architectural compositions. 

Intuitive beauty summarizes our evolved computational algorithms for sur-
vival in an informational environment. Beauty attracts us because we subcon-
sciously interpret it as nourishing; it’s the special type of mathematically-ordered 
complexity that heals us. “Alien” shapes in our immediate surroundings are the 
opposite of beautiful. Because they do not remind us of natural shapes that our 
evolution has programmed us to interpret, they disturb us. Alarm and the “fight 
or flight” response take over our body until we either have enough information 
to judge that some object is harmless, or decide to flee. 

There is more to beauty than utilitarianism: complex recurring patterns 
are found in inanimate physical structures in the universe; hence some of our 
key notions of beauty originate with the structure of matter itself (Alexander, 
2001). This is physics, not biology. It cannot possibly have anything to do with 
evolutionary adaptation, because it goes far deeper and was defined before life 
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evolved. A geometrical necessity for structural coherence is built into our body, 
and co-exists with separate aesthetic instincts arising from what is biologically 
“useful”. A visceral kind of beauty is independent of anybody’s opinion. 

2. The Golden Mean and the Fibonacci sequence.

What is called the Golden Mean (or Golden Ratio) is an irrational number 
approximately equal to 1.618 and usually denoted ϕ (the Greek letter Phi). This 
number arises as the solution to the problem of subdividing a rectangle into a 
square x2 and a remaining, smaller rectangle that is similar to (i.e. has the same 
aspect ratio as) the original large rectangle (Figure 1). 

Figure 1. A Golden Mean rectangle in which the piece “left over”
after defining a square has the same aspect ratio as the original rectangle. 

The geometrical problem is described by the relation ( x + 1 )/x = x , leading 
to the equation: 

x2 = x + 1							       (1)

Equation (1) has the positive exact solution x = ϕ = (1 + √5)/2, which is the 
Golden Mean. The Golden Mean is linked to the Fibonacci sequence. Consider 
the sequence of positive integers { an } defined by the recursion relation an+2 = an+1 
+ an , with a1 = a2 = 1, giving: 

{ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ... }		  (2)

Starting from 1 and 1 generates the entire sequence, and is the simplest way 
to describe growth by adding two numbers to obtain the next one. 
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One can obtain rational approximations of the Golden Mean ϕ with ever 
increasing accuracy from the ratios of consecutive numbers in the Fibonacci se-
quence Equation (2). This result is due to the great astronomer Johannes Kepler 
(1619). Listing some of these ratios gives the following approximations: 

{ … 8/5 = 1.60, 13/8 = 1.625, 21/13 ≈ 1.615 … }

Therefore, the ratio of successive terms in the Fibonacci sequence Equation 
(2) tends to the Golden Mean ϕ in the limit:

an+1 / an → ϕ = 1.618... 

3. Hierarchical subdivisions and scaling.

Any serious theory of architectural design ought to describe hierarchical 
subdivisions, scaling, and the relationship among distinct scales. I propose that 
a building should have well-defined subdivisions at dimensions that correspond 
to powers of e , equal to 2.718… (Salingaros, 1998; 2010). The design method uses 
the largest dimension L of the structure, making sure that substructures exist 
very roughly at L/e , L/e2 , L/e3 , etc. all the way down to the size of the granula-
tion in the materials themselves (see Figure 2, below). The dimension (size) of 
components at each of these levels of scale is approximate; what is crucial is that 
no level of the hierarchy should be missing. 

Design is linked mathematically with natural growth through hierarchical 
subdivisions at distinct scales, which is found in a majority of natural structures. 
There is furthermore a regular geometrical relation among different scales of sub-
structure, and in many cases, the scales are related by a single scaling factor. This 
theory is based on systematic observations and measurements by Christopher 
Alexander (2001), who found that scaling factors of around 3 (with an extended 
range roughly between 2 and 5) tend both to predominate in nature, and to be 
preferred by human observers. 

The scales in a natural hierarchy are skewed towards the smallest sizes. 
Growth begins at the infinitesimal scale and develops through an ordered hi-
erarchy up to the largest size. The spacing of different scales is therefore not 
uniform. There are proportionately more small levels of scale than large scales 
(Alexander, 2001; Salingaros, 1998; 2010), something that is not obvious from dis-
cussions about the size of the scales themselves. I will explain this later. 

If one wants to recast this scaling theory as a sequence of integer factors so 
as to compare it to the Fibonacci sequence Equation (2), then successive powers 
of e can be rounded out to:
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{ 1, 3, 7, 20, 55, 148, 403, 1097, ... }				    (3)

This sequence makes more accurate an old prescription sometimes used in 
traditional design: “subdivide everything by three” (Figure 2). Of course, all that a 
designer needs is to repeatedly divide by e ≈ 2.718, and most pocket calculators 
have e built in. The numbers in the sequence (3) have no intrinsic importance: 
they simply approximate an exponential sequence of scales by integers for the 
purpose of comparing with Equation (4), below. 

Figure 2. Components of a complex structure have, for example,
4 pieces of size 1, 2 pieces of size 3, and 1 piece of size 7.

To clarify the point about scales being distributed more towards the smaller 
end of the spectrum, let’s generate a set of measures as a guide for some de-
sign project, beginning from the smallest perceivable detail at, say, 0.5 mm. 
Multiplying repeatedly by the scaling factor e gives the following example sizes, 
where the numbers are rounded off:

{ 0.5 mm, 1 mm, 4 mm, 10 mm, 3 cm, 7 cm, 20 cm, 55 cm, 1.5 m, 4 m, 11 m }
In actual design, the brief and human dimensions fix the larger scales, then 

the smaller scales are computed from those: here we worked in the opposite di-
rection — from small to large — in order to illustrate the theory. These measure-
ments may be useful or not depending upon whether the larger sizes correspond 
closely to what a particular design requires. Note that in a structure of 11 m 
size, there are eight scales smaller than, and only three scales larger than 1 m. 
The smaller scales are much “tighter”. This is a key to understanding the enor-
mous discrepancy between traditional and modernist design (Alexander, 2001; 
Salingaros, 1998; 2010). 

The sequence of integer approximations to the powers of e in Equation (3) 
compares very roughly to alternate terms of the Fibonacci sequence Equation (2). 
That means that the even terms of the Fibonacci sequence Equation (2) could, if 
desired, be used for the theory of design based upon a scaling hierarchy: 

{ 1, 3, 8, 21, 55, 144, 377, 987, ... }				    (4)
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The numbers in Equation (4) can be generated as a sequence { bn } with re-
currence relation bn+2 = 3bn+1 – bn , b1 = 1, b2 = 3. In the limit, ratios of consecutive 
terms of Equation (4) tend to a number ψ = 2.618… (the Greek letter Psi), which 
is the positive solution of the equation x2 = 3x – 1. This number ψ is related to the 
Golden Mean as ψ = ϕ2 = ϕ + 1 ≈ 2.618, and notice that ψ is within 4% of the value 
of e . All of this discussion attempts to make more useful Alexander’s original 
findings of scaling by a factor anywhere from 2 to 5 (Alexander, 2001). 

Design can thus be guided by knowing a sequence of sizes that should be 
defined very approximately by the tectonics of the structure itself. Where struc-
tural members don’t provide a required scale, the architect creates ornament. 
This is a key point. To the best of my knowledge, architects have never con-
sciously implemented this tool (other than sometimes applying the “rule of 3”), 
yet we universally find built examples with such subdivisions. What probably 
happened is that builders throughout history simply created subdivisions that 
“felt right” because those mimicked natural forms. 

The nested rectangles shown in Figure 3 generate a hierarchy of scales — 
not ratios of sides — that can then be used to approximately regulate a struc-
ture’s subdivisions. A second point is to recognize fractal scaling, where simi-
lar components (four “golden” rectangles in this simplified case, but in practice 
any shape at all) repeat at different magnifications. Scaling similarity is the main 
characteristic of all fractals, and can be found in many of the world’s most be-
loved historical buildings (Alexander, 2001; Salingaros, 1998; 2010). 

Figure 3. One could equally well use nested Golden Mean rectangles to generate the alternate
Fibonacci numbers, which then define the sizes in a natural scaling hierarchy.

The relative lengths at the top of Figure 3 correspond to the numbers in 
the sequence Equation (4). Why do we want to use only every other term of the 
Fibonacci sequence? The reason is that we wish to measure and compare the size 
of design components using a scaling ratio, and not compare sides of a rectangle 
that define an aspect ratio. 
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To summarize: the Golden Mean ϕ is useful in human creations in the same 
way it is found to occur in nature, where it related to the hierarchical scaling that 
is a consequence of organic growth. A natural hierarchy of scales can be gener-
ated by either an exponential or a Fibonacci sequence, which provide a checklist 
of component sizes.

The design method just described assumes that built structures will be ap-
proximate, and thus allows for a wide tolerance and considerable deviations 
from the numbers given above. Thus, in real-world design, one creates an ap-
proximate hierarchy of different scales in trying to mimic natural growth as best 
as possible: not through precision, but through hierarchical complexity. The sim-
plistic application of Golden Mean rectangles can lead to minimalist rectangles, 
which represent the opposite effect to what I am presenting here. 

4. Universal (fractal) distribution of sizes

Mathematics relates components of a whole via their relative number and 
size. The universal distribution law (Salingaros and West, 1999) says: “In a com-
plex system, there are few large objects, more intermediate-size objects, and many 
smaller objects, roughly in an inverse-power relationship”. This means that the 
number of elements of different sizes we perceive at the same time should be 
inversely proportional to their size (see Figure 2, above). More-refined versions 
of this law follow a scaling index that corresponds to the fractal dimension, and 
is not simply equal to –1. The components of a fractal are all self-similar through 
scaling (an additional relationship), which gives it its geometrical coherence. 

Let pi be the number of design elements of a certain size xi . Then, the num-
ber of elements of each size is inversely proportional to their size, where the 
constant C is fixed by the largest size, and the power m corresponds to the fractal 
dimension. 

pi = C/(xi)
m							      (5)

In a frequency distribution, sizes xi are measured as lengths, whereas mul-
tiplicities pi are integers. Mathematical fractals are generated as an infinite series 
of scaled-down copies of a single element, and illustrate ideal cases of this law. 
For the Sierpinski gasket, where the area of a triangle gets progressively subdivid-
ed into smaller and smaller triangles, the scaling factor is 2 and the scaling index 
equals the fractal dimension m = D = ln3/ln2 ≈ 1.58. For the von Koch snowflake, 
where the sides of a triangle get progressively subdivided into smaller and smaller 
triangles, the scaling factor is 3 and m = D = ln4/ln3 ≈ 1.26 (Salingaros and West, 
1999). The easiest and most practical choice in architectural applications is m = 1. 
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The inverse-power law Equation (5) is derived from proportionally distrib-
uting entropy among all the available scales in a complex structure (Salingaros 
and West, 1999). It is also related to the allometric growth law satisfied by many 
natural and especially biological systems. 

A fundamental mathematical requirement governs subdivisions of a design 
or structure, and a scaling law checks those different scales. In addition, we have 
derived a numerical distribution of objects or components on each scale. This mea-
sure applies to fractals. The universal distribution is independent of simple geo-
metric shapes and leads to the coherent structures found in the plant world, where 
nothing is truly straight. Artificial complex systems also evolve toward such a dis-
tribution as they acquire “emergent properties”. Examples include electrical power 
grids, ecosystems, Internet links, and the structure of languages (Zipf’s Law). 

The universal (fractal) distribution lies at the basis of human perception. 
Details on the smaller scale establish the meaning of what we see. Contours, 
sharp details, and edge features (high spatial frequency) are more important 
than larger shapes (low spatial frequency) for interpreting visual information of 
a complex scene. Clinical fMRI studies of brain responses reveal that “representa-
tions of scene content are also more strongly conveyed by high than low spatial 
frequencies” (Berman et al., 2017). This is true even though the global forms are 
processed first. 

Coincidentally, linking high spatial frequencies to an image’s meaning ex-
plains why a line drawing can capture the character and expression of a person 
in a portrait. The opposite — minimalist design — eliminates all but the largest 
shapes, which is the cognitive equivalent to blurring an image (loss of all higher 
spatial frequencies). 

There is a very different concept of addition as spatial grouping to gener-
ate a larger element that consists of repeated units (spatial periodicity). Copies 
of the same element along an axis generate a sequence with repeating elements; 
but without intermediate grouping it becomes difficult to relate the whole to its 
numerous smaller components. Such a structure disturbs our cognitive experi-
ence because of the gap in scales. Monotonous repetition is perceived as unnatu-
ral, and makes us uncomfortable because it breaks the fractal distribution law 
(Salingaros, 2011).

Figure 4. Monotonous repetition violates the fractal distribution law by eliminating intermediate scales. 
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Our neurophysiology interprets spatial data by performing something akin 
to Fourier or wavelet decomposition. Individual brain cells in the visual cortex 
perceive different spatial frequencies and orientations, which are then combined 
(DeValois and DeValois, 1988). There are two lessons here for perception. (i) A 
single spatial frequency depends upon regularity, i.e. translational symmetry. 
Departures such as irregular spacings are felt as visually dissonant because their 
encoding requires more neural processing. We instantly notice a spacing that is 
off, because it creates disjoint regular sequences. (ii) Scenes with one predomi-
nant spatial frequency are trivial. Since the brain is designed to analyze complex 
information having the full range of spatial frequencies it evolved to handle in 
natural environments, we perceive that something is missing. 

5. Counting and grouping reduce informational overload

Even the simplest mathematical notions turn out to be very important for 
how we perceive our environment. In a virtual operation, the observer compares 
one geometrical component with another to check whether they match or not. 
Design elements could be counted when they have more or less the same size, 
shape, and orientation. Redundancy and similarity of shape reduce information 
overload. The brain then treats them as copies of the same element. If, on the other 
hand, dissimilar elements appear in a composition, they need to be accounted for 
individually, which takes up information processing in our brains that is needed 
for other life tasks. 

This is not the end of the story, however. The mere presence of several cop-
ies of the same element can still lead to information overload, if their positions 
are unrelated. Symmetries in position reduce this extra information needed to 
fix the location of elements distributed in space into a more manageable amount. 
Visual techniques for doing this use multiple symmetries to form each group, 
and also define a wide border to contain a group (Alexander, 2001). 

Figure 5. Arches group three columns into one repeating unit. 
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Information coming from numerous unaligned copies of the same repeating 
element is difficult to grasp, since our sensory system doesn’t actually count, but 
perceives numbers visually as patterns (except for some autistic persons who can 
instantly count a large number of randomly-distributed objects). Psychologically, 
this effect is known as the “cognitive limit of 7”, which is the maximum number 
of easily remembered digits, such as a phone number. A large number of ele-
ments can be better handled cognitively by grouping them, so that we count the 
groups instead of the smallest individual elements. 

Cognition includes the mechanism of “perceptual invariance”, which 
matches a pattern after displacement, rotation, or scaling of the original. A simi-
larity distance between two visual elements is the number of transformations 
needed to get from one to the other. The shortest measure equals 1 in the case 
where an exact copy is displaced by some physical distance. Scaling of concentric 
figures again equals 1, whereas scaled-up or scaled-down copies at some separa-
tion count as 2 (displacement plus the scaling transformation). Our cognitive/
physiological system is not as general as the mathematics, however, since it privi-
leges the vertical axis. 

For repeating design or structural elements to be aligned, they need to have 
at least one common dimension, with possible variations. Either the repeating 
elements are regularly spaced, or they are grouped into a more complex unit, 
which then repeats regularly. Grouping components into a larger perceptual 
whole fixes the next scale up in the hierarchy. A tilted copy, however, is not sub-
ject to the same simple grouping as are those elements with strict translational 
symmetry. The increased similarity distance of tilted figures counts as a weaker 
correlation. 

Scaling symmetry is something entirely distinct from the other types of po-
sitioning symmetry, and links components visually when we see magnified or 
reduced versions of the same thing. This is the basic feature of a fractal (think of 
a cauliflower), which contains a large number of substructures, all of which are 
self-similar at different magnifications. Scaling symmetry is a dominant feature 
in traditional and vernacular architectures, and is one reason those quite differ-
ent form languages appeal to our innate mathematical sense.

6. Reflectional, rotational, and translational symmetries 

Architectural elements as visible shapes need to be combined, compared, 
counted, and juxtaposed. Very generally, combinatorics and relations are de-
rived from adding, aligning, counting, grouping, and repeating the elements in a 
composition. These design operations, usually performed subconsciously, trig-
ger our aesthetic response. 
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A general mathematical-visual mechanism by which we interpret our world 
is to group adjoining geometrical elements via symmetries into larger wholes. 
For example: (i) two juxtaposed mirror images are joined to make a symmetric 
whole; (ii) aligned repetitions of the same element are joined to make a larger 
whole having translational symmetry; (iii) juxtaposed elements that are related 
via rotation can be grouped into a larger round whole. Symmetric relations order 
our environment; they also work at a distance, although their strength decreases. 
We can combine elementary symmetries: for example, translation with reflection 
into what is known as a ‘glide symmetry’. 

Figure 6. Rotational symmetry with repeating elements focuses on an entrance.

To implement translational symmetry in composition, design elements 
need to have the same size and shape (either oriented in the same way, reflected, 
or rotated), and be aligned horizontally or vertically. Their repetitions should be 
regularly spaced: otherwise there is no positioning symmetry. These minimal 
requirements influence architectural composition to have a certain “ordered” ap-
pearance, one that echoes traditional and vernacular styles. Yet this comes from 
mathematics — supplemented by neuroscience working with physics, which 
privilege the horizontal and vertical symmetry axes because of gravity — and 
determines architectural “style”. 

7. Privileging the vertical axis

Mathematical notions of “beauty” correspond to what is favored by our 
sensory system. We are constantly processing information in our immediate en-
vironment, comparing and looking for groupings, a task that consumes a lot of 
metabolic energy. We are often overloaded with environmental information, and 
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rely on built-in algorithms to reduce and organize it. If we cannot instantly clas-
sify and categorize forms and shapes surrounding us, we continue to process the 
information indefinitely, which tires us. This is known as “cognitive fatigue”. 

Of the two means to handle an overwhelming amount of information by 
actively shaping our surroundings — (i) eliminate it, or (ii) organize it — only 
the second option endows meaning to the environment. Unfortunately, dominant 
architectural culture adopted the first option universally ever since the 1920s. It 
failed to consider human interface requirements. As a result, minimalist envi-
ronments have no mathematical meaning, and their creators have had to invent 
intellectual constructs to take its place. But the human body reacts consistently 
and perceives such places as meaningless (Mehaffy and Salingaros, 2011; 2013). 

Neurophysiology supports this line of reasoning because specific brain cells 
are designed to recognize shapes and symmetries. Individual neurons respond 
to specific colors, simple geometric shapes, distinct orientations (angles), and 
some rather complex shapes essential to our evolutionary survival. Among the 
latter are “face-recognition” cells, which respond to bilateral symmetry about a 
vertical axis, and to a generic facial structure of “mouth” with two “eyes” above 
(Sussman and Hollander, 2015). Our brain is wired to recognize symmetric com-
binations of simpler elements into more complex wholes. 

Adding a strict neurological constraint, our inner-ear mechanism control-
ling balance prefers a vertical axis. Consequently, diagonals could and do trigger 
nausea in the observer. This is the reason why, during millennia, symmetry axes 
never departed from the vertical, and if they did so by accident (such as in the 
leaning Campanile of the Cathedral of Pisa, Italy), the result became notorious. 

Figure 7. Bilateral symmetry in a building that is reminiscent of a “face”.

Violating the vertical axis, and neglecting reflectional symmetry about a 
vertical axis, creates anxiety in the viewer. Building façades that lack such bilat-
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eral symmetries either repel us or simply do not register, even as we look directly 
at them (Sussman and Ward, 2017). Furthermore, if a building’s entrance is not 
marked using our innate preference for a symmetrical, face-like design, it’s easy 
to miss. In general, a composition must employ scaling and bilateral symmetries 
to focus on the entrance to the building. Deliberately avoiding this cognitive rule 
compromises so many buildings built since the end of World War II, where the 
design style conspires to hide the entrance. 

8. Vector spaces and closure

Through the process of ordering our environment cognitively, the human 
brain created Mathematics (Lakoff and Nuñez, 2001). Seeking patterns of coher-
ence and consistency, classification simplifies informational disorder and leads 
to a logic of classes. It is reassuring and satisfying to know what belongs in-
side a class — defined according to relational rules — and what remains outside. 
Experiencing an environment where its elements obey a closure property rather 
than random elements randomly distributed endows it with meaning. Closure in 
this sense satisfies the brain’s informational need for regularity relations among 
elements of mathematical classes that we confront in our daily lives. 

A Vector Space is a collection of objects that can be added and have scaling 
(i.e. one can magnify each element proportionally). Notions related to a Vector 
Space correspond in a deep way with our perceptive apparatus. We like to relate 
the components of what we see in two ways: (i) compare them visually at a dis-
tance to determine whether two or more components could be grouped by simi-
larity; and (ii) link components by scaling, where we see magnified or reduced 
versions of the same thing. 

Design that incorporates advanced cognitive capabilities is related to a more 
specialized mathematical framework than a vector space. Since what is presented 
here is an intuitive investigation, it necessarily mixes mathematical notions with 
mechanisms of human perception. The treatment of architectural elements relies 
to a large extent on techniques used in computer graphics. It is useful to identify 
the visible components of a building or space with vectors in an abstract sense. 
Two operations, vector addition and multiplication by a scalar, are used here by 
analogy. Recall the four main axioms for a vector space:

1. The zero (null) vector is in the space.
2. Closure under addition.
3. Closure under reflection.
4. Closure under scaling. 
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The zero vector must be something that is perceived as nothing at all. 
Candidates for the architectural “zero vector” are flat white or gray walls, plate 
glass, curtain walls, or purely reflective surfaces. Perfectly smooth white, trans-
parent, or totally reflective surfaces do not offer the human eye anything to focus 
on, and therefore the brain interprets that there is nothing there. Already there is 
a problem of how to handle the possibility of three tectonically distinct types of 
zero vector: colorless flat, transparent, or reflective. I do not attempt to answer 
this question here, but note with alarm that those are the preferred architectural 
surfaces since the 1920s. 

A first interpretation of the “negative” of a vector is its spatial reflection in 
the 2-dimensional visual plane. A design element can be reflected across any axis 
in that plane. Closure under reflection then corresponds to the inclusion of all 
elements plus their reflections together in a structure. Design that satisfies this 
rule will show a collection of compound elements that possess bilateral symme-
try. In practice, to do this for every possible element and its reflection would be 
overwhelming and redundant. Additionally, we have to choose specific axes of 
reflection rather than include every possible axis in each design.

An architectural “vector” grouped together with its spatial reflection creates 
a coupled symmetric pair, but they do not cancel each other. This is the opposite 
of the mathematical situation, where the summation of a vector with its negative 
gives the zero vector. The material situation is more complicated, since addition 
in the visual plane corresponds with “assembly”, as smaller architectural units 
(vectors) are assembled into larger ones. 

Figure 8. Self-similar arches on different scales. 

There is a second type of “opposite” of a tectonic element that takes place in 
the third dimension, which is along the line of sight. It is a reflection orthogonal 
to the visual plane. One may define a same-size element with opposite charac-
teristics in the depth dimension. Imagine a bas-relief compared with its negative 
mould. If we virtually superimpose an architectural element and its opposite in 
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depth, normally those should cancel out to leave nothing, i.e. a smooth flat sur-
face. Something here is analogous to the mathematical case. 

The vector space properties tell us to always have pairs of opposite ele-
ments present, and this applies in this second interpretation according to depth. 
If we have, say, concave and convex moldings somewhere, then, when virtually 
superimposed, they would cancel out to zero (flat). This application provides a 
working rule: moldings should be present in equal numbers so that concave and convex 
parts are balanced visually. Again, this is certainly the case with moldings in tradi-
tional and vernacular architectures, and is one reason those appeal to our innate 
mathematical sense. 

9. Scaling similarity

Multiplication by a scalar either magnifies or reduces an architectural ele-
ment without changing its internal relationships. This operation scales a figure 
up or down. In an architectural sense, this is a key feature in traditional architec-
tures that include scaled-up or scaled-down copies of elements such as rectan-
gles (door and window openings), and the curves defined in domes and arches. 
Those shapes are sometimes repeated further in a much scaled-down version 
employed in the ornamentation. As with the case of including all reflections of 
every architectural element, which is impossible, we cannot include all possible 
magnifications of elements.

Actually, it is found that scaling only occurs in a discrete hierarchy, so that 
the architect determines larger and smaller sizes by using a fixed scaling factor. 
This means that the mathematics describes not a Vector Space but a Module over 
the Geometric Sequence of powers of e ≈ 2.7, { en }. (The sequence is not quite 
an Abelian Cyclic Multiplicative Group, since there is a maximum power deter-
mined by the size of the building. Exponentials are preferable to Fibonacci num-
bers, which do not close under multiplication because of Carmichael’s Theorem). 
The Module defined here requires all copies of an element scaled by the factors 
en to be present. 

 In practice, this process selects a discrete set of scaled copies from all pos-
sible scaled copies to include in a design. Creating a whole that is an assembly 
of self-similar copies defined by some scaling factor is a central feature of frac-
tals. The architectural vectors are spatially quantized by the necessity for fractal 
scaling, to make them compatible with hierarchical systems. The scaling ratio 
of e was proposed at the beginning of this paper, which seems to satisfy a large 
number of traditional buildings in the architecture of many cultures around the 
world (Salingaros, 1998). 
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Figure 9. Fractal scaling constrains magnifications to obey a discrete scaling factor.

10. Vector addition generates coherence

Elements that we use to define an architectural vector space must be addi-
tive. Note that there are distinct types of addition: (i) alignment and assembly, 
and (ii) virtual superposition through comparison. Intuitively, creating our en-
vironment involves adding tectonic elements physically to each other, and also 
grouping them visually. We can perceive whether two components, either ad-
joining, or situated at some distance from each other, add to create a harmoni-
ous larger whole. This is the concept of addition in systems theory, where com-
ponents combine to create a larger system, and is very different from the usual 
vector space addition. 

Addition is impossible when two components clash, so that putting them 
together (either physically or virtually) creates a fragmented or otherwise in-
harmonious juxtaposition. In that case, the two elements are not additive; hence 
do not belong inside the same architectural space. Addition depends upon the 
simplest geometrical relationships: alignment, complementary fit, similar size, 
etc. The addition operation creates wholeness in the sense of Alexander (2001). 
Alexander has already detailed 15 operations that bring matter together in a 
way that generates more complex yet coherent larger-scale structure (Alexander, 
2001; Salingaros, 2010).

One characteristic of coherent groupings created by addition through align-
ment and assembly is the presence of multiple symmetries. This implies that the 
addition operation of design vectors acts together and depends upon a process 
for creating symmetries. For example, addition as the assembly of complemen-
tary pairs leads to alternating repetition, a universal property documented by 
Alexander (Alexander, 2001; Salingaros, 2010). The corollary holds true: vectors 
that are not related by some type of symmetry do not add. This underlies an im-
portant connection between addition in the systemic sense and symmetry. 
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Addition also presupposes some measure of affinity among the constituent 
elements, whether they are simple or compound. Tectonic and design elements 
could share the same material, shape, texture, etc. Commonality makes it possi-
ble to “add” spatially-separated vectors, whereas too great a dissimilarity marks 
them as incompatible. If they cannot otherwise be related by another mechanism 
such as symmetry, then the addition operation cannot be performed, and they do 
not belong in the same architectural space. 

Figure 10. Building deliberately misaligns elements to violate the architectural space. 

To summarize the addition operation, vectors add or don’t add at a distance 
according to their symmetric relationship to each other. If they do add, they do 
so in a way to generate a larger element on a much larger scale as themselves. 
Local addition is also a process that seems to create larger wholes, as for example 
adding an element to its local reflection. This does not lead to cancellation, but to 
a coupled symmetric pair.

11. Conclusion: is beauty linked to meaning in architecture?

The brain as an information processor searches for meaning in the environ-
ment. Our evolution has prepared us to interpret patterns and classify informa-
tion. Meaning thus has a biological origin directly linked to our survival and 
has little to do with ideology, philosophy, or politics. This is the reason why the 
human body reacts positively in a visceral sense to “beauty” that has healing 
properties, and why children respond spontaneously to such beauty. 

By some accident of history that is too involved to go into here, the teaching 
of design has become focused on doing the opposite of the mathematical tools 
outlined above. Architects hold a mental model that does not seek to optimize the 
human-environment relationship. Fashionable design has over several decades 
eschewed symmetries of all types, violated gravity, and eliminated the smaller 
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elements that could define a fractal distribution on a structure’s façade or interior 
(Mehaffy and Salingaros, 2013). Yet neuroscience identifies those characteristics 
as healing, and suggests that our body identifies them as elements of “beauty”. 

This conscious reversal began with an attempt at innovation through break-
ing from traditional practices that included mechanisms for mathematical co-
herence. By now this contrary approach to design has been internalized and is 
no longer questioned (Mehaffy and Salingaros, 2011). Attempts by architects to 
include design elements I mention as necessary for our sensory well-being are in-
terpreted by the mainstream profession as violating some absolute ethical code. 
Theoretical explanations within architecture avoid discussing human physiol-
ogy and rely instead upon a design exegesis that is reminiscent of cult beliefs 
(Salingaros, 2014). 

Traditional and vernacular buildings aside, why is biologically-based beau-
ty reversed in the “approved” architecture of our times? Practitioners who de-
sign the form first, as an abstraction, might feel accused and will deny that they 
are rejecting beauty. The same denial comes from an intellectual community that 
praises new and older buildings that deliberately reject the necessary mathemati-
cal constructs presented here, as well as from an educational system that has 
been teaching our young architects to exclusively create abstractions (Salingaros, 
2017).

One reads claims that architecture is all about shaping space for habita-
tion and movement, and is not primarily concerned with aesthetics. This state-
ment is misleading and self-justifying, because the majority of buildings that we 
perceive as psychologically hostile were designed by following a very definite 
anti-aesthetic. Mathematical rules indeed determine what are the most comfort-
able volumes for each function and situation. A solid research basis for adaptive 
design exists, providing guidelines congruent with the mathematical rules for 
beauty discussed here. Countless self-builders have relied for millennia on these 
timeless principles for their projects. Dominant architectural culture shows no 
interest in this body of work, and pointedly ignores it. 

Acknowledgment: Some material is taken from (Salingaros, 2018; 2019). 
Many thanks to Dr. Dmitry Gokhman for helpful advice. 
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